LOG IN창 닫기

  • 회원님의 아이디와 패스워드를 입력해 주세요.
  • 회원이 아니시면 아래 [회원가입]을 눌러 회원가입을 해주시기 바랍니다.

아이디 저장

   

아이디 중복검사창 닫기

HONGGIDONG
사용 가능한 회원 아이디 입니다.

E-mail 중복확인창 닫기

honggildong@naver.com
사용 가능한 E-mail 주소 입니다.

우편번호 검색창 닫기

검색

SEARCH창 닫기

비밀번호 찾기

아이디

성명

E-mail

학술자료 검색

A Study of Machine Learning Approaches for Analyzing Post-Earnings-Announcement Drift in Korea

  • Dojoon Park School of Business, Yonsei University
  • Jihoon Jung Graduate School of Information, Yonsei University
  • Zoonky Lee Graduate School of Information, Yonsei University
This study proposes a machine learning approach to understand how post-earnings-announcement drift (PEAD) works. We analyze when PEAD, combined with other factors, becomes more pronounced. To accommodate diverse variables and more complex specifications, two tree-based machine learning approaches including eXtreme Gradient Boosting (XGBoost) and Light Gradient Boosting Machine (LightGBM) are used to examine the relationship between PEAD and 89 variables. The long-short portfolio produced by LightGBM model reports 2.1 times higher returns than the portfolio’s returns, based on the conventional measure of earnings surprise. The model enhances the economic and statistical significance of the long-short portfolio returns. SHapley Additive exPlanations (SHAP) analysis determines feature importance and shows that liquidity, firm size, profitability ratios, share turnover, net trading flows by retail investors, and earnings surprises, play an important role in the prediction of PEAD.

  • Dojoon Park
  • Jihoon Jung
  • Zoonky Lee
This study proposes a machine learning approach to understand how post-earnings-announcement drift (PEAD) works. We analyze when PEAD, combined with other factors, becomes more pronounced. To accommodate diverse variables and more complex specifications, two tree-based machine learning approaches including eXtreme Gradient Boosting (XGBoost) and Light Gradient Boosting Machine (LightGBM) are used to examine the relationship between PEAD and 89 variables. The long-short portfolio produced by LightGBM model reports 2.1 times higher returns than the portfolio’s returns, based on the conventional measure of earnings surprise. The model enhances the economic and statistical significance of the long-short portfolio returns. SHapley Additive exPlanations (SHAP) analysis determines feature importance and shows that liquidity, firm size, profitability ratios, share turnover, net trading flows by retail investors, and earnings surprises, play an important role in the prediction of PEAD.
Post-earnings-announcement drift,Machine learning,XGBoost,LightGBM,SHAP